Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Lavinia Balan

Lavinia Balan

Institute of Materials Science of Mulhouse, France

Title: Photo-design of metal/polymer nanomaterials and nanostructured materials

Biography

Biography: Lavinia Balan

Abstract

The size dependent properties of noble metal nanoparticles (MNPs) have created a great promise for their use in a variety of optical, electronic and biomedical applications. Nowadays, a great diversity of techniques and methods were developed for their synthesis: chemical, thermal, photochemical or biological. Among them, photochemical approach has proven an excellent tool to synthesis nanoparticles and also nanocomposites materials as well in the investigation of the mechanistic aspects of their formation. In particular, present the advantages of a “green” and “highly flexible” character and a strong control in both spatial and temporal directions. In this context, firstly, we will use the photochemistry to generate MNPs through photo reduction of a metal precursor using free radicals generated from photosensitizers in an aqueous solution or directly generated onto a glass surfaces in order to produce plasmonic surfaces. Thus efficient nanoparticles synthesis and their morphological control require a careful selection of experimental conditions such as photonic and chemical parameters. Moreover, the photochemical tool was used not only to the nanoparticles synthesis but also to obtain advance nanomaterials as nanocomposites metal/polymer. The hybrid nanocomposites have been obtained by combing the in situ photoreduction of MNPs with the acrylates monomers photopolymerisation. Specific interactions between the macromolecular network and the nascent particles was funded to play an important role insofar as they control the access of metal atoms to the different crystalline planes of the growing nanoparticles, which is necessary to obtain anisotropic objects. The assembling process of MNPs in the polymer matrix was the next step of our work. Controlling both the synthesis and multi-scale organization (nano, micro and macro) of such cross-linked organic-inorganic nanomaterial opens promising prospects in the field of advanced materials.